ISSN: 2321-5674(Print) ISSN: 2320 – 3471(Online) Suruchi Singh et.al Indian Journal of Research in Pharmacy and Biotechnology

A REVIEW ON MEDICINAL PLANTS HAVING ANTIOXIDANT POTENTIAL

S.K Sharma, Lalit Singh, Suruchi Singh^{*} Sunder Deep Pharmacy College, Ghaziabad, U.P, India. *Corresponding author: E.mail: suruchibpharm89@gmail.com ABSTRACT

Natural compounds from plants and other life forms (bacteria, fungi, marine organisms) represent a major source of molecules with medicinal properties. Among them, antioxidant substances are of particular interest. The understanding of the central role that oxidative stress holds in the progression of disorders as varied as: cardiovascular diseases, degenerative conditions, rheumatic disorders, metabolic syndrome, and in aging, makes antioxidant capacity to a key-feature of modern, multipotent remedies. A lot of medicinal plants, traditionally used for thousands of years, are present in a group of herbal preparations of the Indian traditional health care system (Ayurveda) named Rasayana proposed for their interesting antioxidant activities.

Keywords: Antioxidant, Ayurveda, Rasayana, Oxidative stress.

INTRODUCTION

Antioxidants are substances that may protect your cells against the effects of free radicals. Free radicals are molecules produced when your body breaks down food, or by environmental exposures like tobacco smoke and radiation. Free radicals can damage cells, and may play a role in heart disease, cancer and other diseases. Studies suggest that a diet high in antioxidants from fruits and vegetables is associated with a lower risk of cancer, cardiovascular disease, Parkinson's disease and Alzheimer's disease. A plant-based diet protects against chronic oxidative stress-related diseases. Dietary plants contain variable chemical families and amounts of antioxidants. It has been hypothesized that plant antioxidants may contribute to the beneficial health effects of dietary plants. Our objective was to develop a comprehensive food database consisting of the total antioxidant content of typical foods as well as other dietary items such as traditional medicine plants, herbs and spices and dietary supplements.

Since ancient times, the medicinal properties of the plant materials improve the quality and nutritional value of plants has been investigated in the recent scientific form. While, flavonoids are a group of polyphenolic developments throughout the world, due to their potent compounds with known properties, which include free antioxidant activities. The antioxidants have been reported to have radical scavenging, inhibition of hydrolytic and oxidative to prevent oxidative damage caused by free radical.

Antioxidants Potential Plants

Free radicals are atoms or molecules with singlet, i.e. unpaired electron which makes them highly reactive. Oxidative free radicals are generated by metabolic reactions create a chain reaction leading to membrane and other lipid peroxidation, DNA damage, etc. This has been implicated in atherosclorosis (oxidated LDL is more atherogenic), cancers, neurodegenerative and inflammatory bowel diseases. Many endogenous and dietary compounds like superoxide dismutase, ferritin, transferrin, reruloplasmin, tocopherol, carotene and ascorbic acid have anti oxidant and free radical scavenging properties. Small amounts of reactive oxygen species are continually formed in the body in the cell membrane and close to the cells organelles. They act where they are generated. Hence, they can damage most cell structures including membrane lipids, proteins, enzymes and nuclic acids.

The body has mechanisms to produce the small amounts of oxidants normally formed during metabolic reaction. Reactive species such oxidants are formed in controlled amounts by neutrophil leucocytes on exposure to microbes are beneficial to the body in that they participate in destroying the microbes. Excess of oxidants, however, can be harmful to the body. Liver is also under constant threat of oxidants and some of the free radical especially H_2O_2 . Lipid peroxidation has been demostred as one of the important feature after exposure to hepatotoxic substances and also is a measure of extent of hepatic damage. Several herbs and herbal formulations are available for the scavenging activity. In addition to this there is a global trend to revive the traditional systems of medicines and renewed interest in the natural remedies for treating human ailments. Antioxidants have important preventive roles, not only on undesirable changes in the flavor and nutritional quality of food, but also on tissue damage in various human diseases. Almost all organisms are well protected against free radical damage by either enzymes or compounds, such as ascorbic acid, α -tocopherol and gluthione.

ISSN: 2321-5674(Print) ISSN: 2320 – 3471(Online)

Suruchi Singh et.al

Indian Journal of Research in Pharmacy and Biotechnology

When the mechanism of antioxidant protection unbalanced by the deterioration of different factors, physiological functions can occur which result in diseases or accelerated aging. Consequently, it is important to find compounds that prevent oxidation. Antioxidants have important preventive roles not only on undesirable changes in the flavor and nutritional quality of food, but also on tissue damage in various human diseases. They are effective in prevention of degenerative illnesses, such as different types of cancers, cardiovascular and neurological diseases, cataracts and oxidative stress dysfunctions. Polyphenols are the most significant compounds for the antioxidant properties of plant raw materials. Then antioxidant activity of polyphenols is mainly due to their redox properties, which allow them to act as reducing agents, hydrogen donors, singlet oxygen quenchers, metal chelators and reductants of ferryl hemoglobin. Medicinal plant parts are commonly rich in phenolic compounds, such as flavonoids, phenolic acids, stilbenes, tannins, coumarins, lignans and lignins. These compounds have multiple biological effects including antioxidant activity.

CONCLUSION

As antioxidant is a molecule capable of slowing or preventing the oxidation of other molecules. Oxidation is achemical reaction that transfers electron from a substance to an oxidizing agent. Oxidation reactions can produce free radicals, which start chain reactions that damage cells. Antioxidants are the substances that inhibit oxidation and are capable of counteracting the damaging effects of oxidation in body tissue. They prevent damage caused by free radicals. Free radicals are very unstable molecules with an unpaired electron and are important intermediates in natural processes involving control of vascular tone, cytotoxicity and neurotransmission. Free radicals cause many human diseases like cancer, Alzheimer's disease, cardiac reperfusion abnormalities, kidney disease and fibrosis etc. Antioxidants play many vital functions in a cell and have many beneficial effects when present in foods.

PLANT NAME	PLANT PART	MAIN CHEMICAL CONSTITUENTS
Withania somnifera	Berries, leaves,	Ascorbic acid,α-tocopherol and reduced glutathione,
	roots	superoxide dismutase, ascorbate peroxidase, catalase,
		peroxidase & polyphenol oxidase
Ocimum sanctum	Leaves, Seeds	Ascorbic acid, β -carotene, β -sitosterol, eugenol,Palmitic acid,
		tannin
Piper nigrum	Fruit	Ascorbic acid, β carotene, Lauric acid, myristic acid, palmitic
		acid, piperine
		Insulin, tannic acid
Arentium lappalo	Root	Gallic acid
Scutellaria barbata	Leaves,	Alanine, α tocopherol, ascorbic acid, camphene, eugenol, γ -
Daucus carrota	Leaves, Seed, Root	terpinene, histidine Antitoxin
		Ferscolin
Coleus ferscoli	Roots	^y -terpinene, linalyl acetate, myrcene,
Salvia sclarea	Entire plant, seed	Palmitic acid, rosemarinic acid
Eugenia caryophylla	Inflorescence	Acetyl-eugenol, Ascorbic acid, β -carotene, β -sitosterol,
		caryophyllene oxide, eugenol, isoeugenol
		Alanine, Ascorbic acid, β -sitosterol, Caffeic acid, Kaemferol,
		Methionine
Allium sativum	Leaves, Bud	6-Gingerol, alanine, Ascorbic acid, Histidine, Lauricacid,
		Methionine, Myristic acid, Palmitic acid, Tryptophan
		EGB 761, Ginkgogolide
Zingiber officinalis	Leaves, Rhizome	Alanine, α -tocopherol, Ascorbic acid, β -carotene, β -
Ginkgo biloba	Plant	sitosterol, Histidine, OPC, Methionine, Palmitic acid,
Vitis vinifera	Fruit, Seed	

Table 1. List of plants exhibit antioxidant characteristics and their chemical constituents

ISSN: 2321-5674(Print) ISSN: 2320 – 3471(Online) Indian Journal of Research in Pharmacy and Biotechnology

Suruchi Singh et.al

		selenium
Citrus aurantifolia	Fruit	Alanine, α –pinene, ascorbic acid, β -Sitosterol, caffeic acid,
Cymbopogon citratus	Leaves	Eugenol, Linalvlacetate, Palmitic acid, Tannin
Commiphora myrrha	Resin, Sap	B-sitosterol Myrcene Selenium
Myristica fragrance	Seed, Leaf	B-Sitosterol campestrol eugenol
Olea europaea	Leaf	Lauric acid Myrcene, Palmitic acid
	T C	Lauric acid, wyreche, r annife acid
Mentha piperata	Leaf	A -tocopheror, apigenini, p -carotene, γ -
Catharanthus roseus	Leal Entire Dient	tocopherol, kaempterol, Luteolin
officinalisI		Menthol, Limonene
ojjicinalisL		Vincristine, Vinblastine
Santalum album	Leaf Oleoresin	Carsonic acid, Rosemaric acid,
Curcuma domestica	Fruit. Wood	B-sitosterol, Caryophyllene oxide, eugenol, isoeugenol
Acorus calamus	Rhizome	Alanine, eugenol, β -sitosterol, Palmitic acid, phenol
Alisma plantago-	Rhizome	Curcumin, tannins, phenolic acids
aquatica L.		Only antioxidative fractions devoid of beta-asarone should
-		be used.
Allium ursinum L.	Flowering aerial	Triterpene (alisol B)
Cotinus coggygria Scop.	parts, roots	Elavonoide sulfur-containing compounds
Angelica sylvestris L.	Leaf	Flavonos, auronas, chalconos
Anthriscus cerefolium	Leaf	
Anthriscus sylvestris	Root, Grains	
Carum carvi L.	Root, Flowering	Flavonoids (apiin), lignans
Ery	Elevering corriel	Flavonoids (quercetin, apigenin)
ngium campestre L.	Flowering aerial	Flavonoids, volatile oil
Sanicula europaea I	Fruits	Flavonoids, triterpenes
Achillea millefolium s l	Flowering aerial	Rosmarinic acid derivative
nennica minejonini s.i.	part	Flavonoids, tannins, volatile oil
Arctium lappa L.	Flowering aerial	Flavonoids
	part	Flavonoids
Artemisia absinthium L	Leaf, root	Flavonoids
Artemisia vulgaris L.	Flowering aerial	Flavonol glycosides
	part	Flavonoids
Bellis perennis L	Flowering aerial	Flavonoids
	parts	Flavonoids
Bidens tripartita L.	Flowering aerial	Phonelic soids flowerside
	parts	Phenonic acids, flavonoids
Carlina acaulis L.	Flowering aerial	Phenolic acids, acidic polysaccharides with unprecised
	Parts	structure
	Flower	Flavonoids
Carthamus tinctorius L	Flowering aerial	Flavonoids, volatile oils
	part, root	Phenolic acids, flavonoids
	1	Flavonoids
Cichorium intybus L.	Leaf	Phenolic acids, flavonoids
-	Flowering aerial	Flavonoids, polysaccharides (mucilages)
	part	Flavonoids
Cirsium arvense (L.)	Flowering aerial	Flavone 6-C-Glycosides
Scop	parts	

ISSN: 2321-5674(Print) ISSN: 2320 – 3471(Online) Indian Journal of Research in Pharmacy and Biotechnology

Suruchi Singh et.al

	Flowers	Flavonoids, glucosinolates
Conyza canadensis L.	Flowering aerial	Flavonoids, glucosinolates
Cronq.	parts	Flavonoids
Hieracium pilosella L	Flowering aerial	
	parts	Flavonoids
	Deet Flerrening	Flavonoids
Matricaria recutita L.	Root, Flowering	Elevonoide procyanidine
Onopordum acanthium	L oof	Flavonoida, procyandins
Solidago virgaurea I	Leaf	Flavonoids, procyanidins
Taraxacum officinale	Flowering aerial	Flavonoids
agg.	parts	Flavonoids, phenolic acids
Tussilago farfara L	Flowering aerial	Phenolic acids
0 7 7	parts	Flavonoids
	•	Flavonoids, carotenoids
Betula pendula Roth	Flowering aerial	Flavonoids
	parts	Flavonoids
Alliaria petiolata	Glandulae	Flavonoids
Capsella bursa-pastoris	Flowers	Anthocyans
Nasturtium officinale	Leat	Flavonoids.isoflavones (genistein)
Humulus lupulus L.	Branches	Flavonoids, triterpenes
Sambucus nigra L. Sambucus obulus I	Grains	Flavonoids
Vihurnum lantana L	Fruits	Triterpenes
Viburnum opulus L	Grains Leaf	Isoflavones
Evonvmus europaeus L.	Fruits	Isoflevenes
Cornus mas L.	Fruits	Isoflavones
Corylus avellana L.	Leaf, Branch	Isofiavones
-	Flowering aerial	Tannins, procyanidins, flavonoids
Juniperus communis L.	parts	Tannins, procyanidins,
	Flowering aerial	Flavonoids
Hippophae rhamnoides	parts	Xanthones, phenolic acids
Elaeagnus angustifolia .	Leaf, Fruit	Tannins, gallic acid
Equisetum arvense L.	Flowering aerial	Flavonoids, tannins
Calluna vulcaris (I)	parts Flowering sorial	Flavonoids
Calluna valgaris (L.)	riowening aeriai	Flavonoids
Vaccinium myrtillus L	Flowering aerial	Tannins, flavonoids
	parts	Flavonoids, phenylpropanoids
Anthyllis vulneraria L.	Flowering aerial	(verbascoside)
2	parts	Flavonoids, phenolic acids
Genista tinctoria L.	Flowering aerial	Flavonoids
	parts	Flavonoids
Lotus corniculatus L.	Flowering aerial	Flavonoida abagalia acida
	parts	Flavonoids, phenoine acids
Melilotus officinalis L.	Flowering aerial	Flavonoids
Pallas	parts	Flavonoids
Ononis spinosa L.	Flowering aerial	Flavonoids
Tuifalium amanga I	parts Dork Flowers	Flavonoids, phenolic acids
r ijonum arvense L.	Bark	Flavonoids
	Duin	

Trifolium pratense L.		
Trifolium repens L. Quercus petraea L.	Flowering aerial parts Flowering aerial parts	Flavonoids, phenolic acids Flavonoids, phenolic acids
Quercus robur L. Centaurium erythraea L. Erodium cicutarium L. Geranium	Flowering aerial parts, roots Flowering aerial parts Flowering aerial parts Flowering aerial	Flavonoids Flavonoids, iridoids Phenolic acids,flavonoids, carotenoids Polysacharides, flavanoids Polysaccharides (mucilages), flavonoids Elavonoids, coumarins
	parts	phenylpropanoids (verbascoside) Tannins,

REFERENCE

Suruchi Singh et.al

Anchana Chanwitheesuk, Aphiwat Teerawutgulrag, Nuansri Rakariyatham, Screening of antioxidant activity and antioxidant compounds of some edible plants of Thailand, Food Chemistry, 92, 2005, 491–497.

ANTAL Diana Simona, Medicinal plants with antioxidant properties from Banat region(Romania): A rich pool for the discovery of multi- target phytochemicals active in free radical related disorders, Analele Universității din Oradea - Fascicula Biologie Tom. XVII / 1, 2010, 14-22.

Arya Vikrant, Bhardwaj Ankur, Sharma Vinit, Pharmacology of some antioxidant plants from district kangra Himachal Pradesh- A Review, International journal of current npharmaceutical research, 3(2), 26 - 31.

Bibi Sedigheh Fazly Bazzaz, Antioxidant and antimicrobial activity of methanol, dichloro methane and, ethyl acetate extracts of Scutellaria litwinowii, Science Asia, 37, 2011, 327–334.

HA Ogbunugafor, FU Eneh, AN Ozumba, MN Igwo-Ezikpe, Physico-chemical and Antioxidant Properties of Moringa oleifera Seed Oil, Pakistan Journal of Nutrition, 10 (5), 2011, 409-414.

Khanahmadi M, Rezazadeh Sh, Review on Iranian medicinal plants with antioxidant properties, Journal of Medicinal Plants 2010, 9(35), 20-31.

Kratchanova Maria, Denev Petko, Ciz Milan, Lojek Antonin, Mihailov Atanas, Evaluation of antioxidant activity medicinal plants containing polyphenol compounds.Comparison of two extraction system, ACTA Biochemia Polonica, 57(2),2012, 229-234.

Krishnaiah Duduku, Sarbatly Rosalam, Bono Awang, Phytochemical antioxidants for health and medicine – A move towards nation, Biotechnology and Molecular Biology Review, (4), 2007, 097-104.

Luz María Sánchez Perera, Arturo Escobar, Caden Souccar, Antonia Remigio and Betty Mancebo, Pharmacological and toxicological evaluation of Rhizophora mangle L as a potential antiulcerogenic drug: Chemical composition of active extract, Journal of Pharmacognosy and Phytotherapy, 2(4), 2010, 56-63.

Suruchi Singh et.al

ISSN: 2321-5674(Print) ISSN: 2320 – 3471(Online)

Indian Journal of Research in Pharmacy and Biotechnology Mandana B, Russly A R, Farah ST, Noranizan MA, Zaidul I S and Ali G, Antioxidant activity of winter melon (Benincasa Hispida) seeds using conventional soxhlet extraction technique, International Food Research Journal 19(1), 2012, 229-234.

P Kanimozhi and J Karthikeyan, A study on antioxidant potential of Glycyrrhiza glabra linn. in 1,4dichlorobenzene induced liver carcinogenesis, Journal of Chemical and Pharmaceutical Research, 3(6), 2011, 288-292.

Pandey Neha, Barve Dushyant, Antioxidant activity of ethanolic extract of Annona squamosa Linn Bark, International Journal of Research in Pharmaceutical and Biomedical Sciences, 2(4), 2011, 1629-1697.

Pratap Sangh., Pandey Sanjay, A review on herbal antioxidants", Journal of pharmacognosy and phytocheistry 1(4), 28-38.

Rahmat Ali Khan, Evaluation of phenolic contents and antioxidant activity of various solvent extracts of Sonchus asper (L.) Hill, Chemistry Central Journal, 6, 2012,12.

Rana Siddhant, Suttee Ashish, Phytochemical investigation and evaluation of free radical scavenging potential of Benincasa hispida peel extracts, International Journal of Current Pharmaceutical Review and Research, 3(3), 43-46.

Sangh Partap, Amit Kumar, Neeraj Kant Sharma, K. K. Jha, Luffa Cylindrica : An important medicinal plant, J. Nat. Prod. Plant Resour. 2 (1), 2012, 27-134.

Scartezzini Paolo, Speroni Ester, Review on some plants of indian traditional medicine with antioxidant activity, Journal of Ethnopharmacology, 71, 2000, 23-43.

Shyamala BN & Jamuna P, Nutritional Content and Antioxidant Properties of Pulp Waste from Daucus carota and Beta vulgaris, Mal NJ Nutr, 16(3) 2010, 397-408.

TK Gopal, Harish G, D Chamundeeswari, C Umamaheswara Reddy, In-vitro Anti-Oxidant Activity of Roots of Boerhaavia diffusa Linn, Research journal of Pharmaceutical, Biological and Chemical Sciences, 4, 2010, 782-788.